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INVESTIGATIONS ON THE STABILITY, OSCILLATION, AND STRESS

ABSTRACT :

CONDITIONS OF AIRPLANES WITH TAB CONTROL

FIRST PARTTAL REPORT — DERIVATION OF THE EQUATIONS OF

MOTION AND THEIR GENERAL SOLUTIONS*
By B. Fllzek

For the design and the construction of alrplanes the control is
of special significance, not only with regard to the flight—
mechanlcal propertles but also for the proportiocnal arrangement
of wing unit, fuselage, and tall unit. Whereas these problems
may be regarded as solved for direct control of airplanse
motions, that is, for immediate operation of the control surfaces,
they are not clarifled as to osclllations, stabllity, and stress
phenomensa occurring in f£flight motions with indirect control, as
realized for instance in tab control. ITts modus operandl is
based on the activation of a tab hinged to the trailing edge of
the main control surface. Due to 1ift and drag variatilons,
maoments originate about the axls of rotation of the main control
surface which cause an up—or-down floating of the main comtrol
surface and thus & change in the direction of the airplane.
Since this tab control means flying with "free control surface,
the treatment of this problem should provide the basls on which
to Judge stability, oscillation, and stress data.

Aside fram the dlecussion of free osclllations and forced
ogclillating conditions, this report points out methods to deal,
above all, with starting conditions. The requlired mathematical
expedlents are suitable, not only for the solution of the given
problem, but also of similar problems, and are therefore treated
in general formulation.

The present report ls to represent & contribution toward the
clarification of the problems arising and, first of all, to treat
the longitudinal motion of an alrplans.

*"Untersuchungen iber die Stabilitdts~, Schwingungs— und Beanspruchungs—
verhdltnisse von Flugzeugen mit Hilfsrudersteuerung. 1. Teil'bericht.
Herleitung der Bewegungsglelichungen und ihre allgemeinen Ldsungen."

Zentrale fiir wissenschaftliches Berichtswesen der Luftfahrtforachung (ZW'B)
Forschungsbericht Nr. 2000, October 24, 194L. This translation i1s the

first partial report (1. Teilbericht) of an investigation made up of two
parts, the second part, FB 2000/2 (2. Teilbericht), of which is NACA TM 1198.
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I. INTRCDUCTION

The control of airplanes up to flying weighte of about 20 tons is
possible with direct control, that i1s, direct operation of the control
surfaces by the pilot. However, for the modern large asircraft of about 30
tons flying welght and stl1ll more for the large aircraft to be expected
in the future, the power required for direct activation of the control
surfaces Iincreases s0 greatly that human muscle power is no longer sufficilent.
One 1s obliged to use indirect controls, the necessary power being suppliled
for lnstance by a servamotor. The tendency wlll be to manage with a
minimm of power.

The present report is to repressnt & contribution toward clarification
of the problems ariging and, above all, to treat the longitudinal motion
of an elrplane,

II. SYIMBOLS

The symbols used correspond to the German standards DIN L 100 second
edition, July 1939; moreover, the following symbols are chosen (cf. also

fi1g. 1):
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m mass of the entire airplane
my partial mase fuselage without control surfaces and tabs
ms partial mass control surfaces without tabs
n3 partial mass of tabs
center of gravity of the whole mystem
51 center of gravity of the partial masses m;
So center of gravity of the partial masses my
S3 center of gravity of the partial masses m3
ey distance of the center of gravity of the partial
mass mj -fram the center of gravity of the whole system
es distance of the center of gravity of the partial
mass my fram the center of rotation of the main control
surface
e3 distance of the center of gravity of the partial
mass mg fram the center of rotatlon of the tab
Fy mament of inertia of the entire airplane about y-axis
Fsl mament of inertia of the partial mass m, about y—axis

through S;

FS2 mament of .inertia of the partial mass m, about Sy

FS3 moment of inertla of the partial mass m3 about S3

Fhp moment of inertia of the elevator about axis of rotation
of the maln control surface

Fan moment of lnertia of the tab about axis of rotation of tab

Ty, deflection of the tab

Aﬂhmax deflection of the tab required for attaining the safe
multiple of load

Loy chord of the elevator + tab

Lgn ' chord of the tab

Cyp coefficlent of the air—force mamsnt of the airplane without

horlzontal tall referred to center of gravity of the
airplane

Com coefficlient of the normal force of the horizontal tail
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coefficient of the horizontal tail mament referred to the
axls through the aeroiynamic center of the horizontal
tail parallel to the y—axis

coefficlent of the elevator moment referred to the axis
of rotation of the main control surface

coefficient of the tab maoment referred to the axis of
rotatlon of the tab

angle of attack at the location of the horizontal tail

mean dynemlc pressure at the location of the horizontasl tail
surface

mean velocity at the location of the horizontal tail surface

mean downwash angle at the location of the horizontal tail

ratlo of the ailr force damping of the entire airplane with
respect to lateral axis to the alr force demping of the
horizontal tail

If similar symobls appear in the individual paragraphs (for

instance, Ax = angle—of-attack increment, AMp, = moment Increment, A = down—
wash angle, A, = determinant, A* = Routh's discriminant), they are dis—
tinguished by 1ndices and their significance follows from the respective
connectilon.

ITI. PRESUPPOSITIONS

In order to clrcumscribe the range of validity of this report, the

necessary presuppositions shall be mentioned in advance; at the respective
places they will be especially emphasized.

1. Unsteady air force influences are not taken into account.
2. Flight motlons are possible only in the stsrplane.
3. Method of amall oscillations.

L. Fully compensated control surfaces, that 1s, the centers of
gravity lie on the axes of rotation of the control surfaces.

5. Omission of the mass couplings and horizontal tail surface
forces in the farce equations.
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6. Omiseion of the mass couplings and of the force couple at the
horizontal tail at Cgqg = O (zero moment) in the equation of

moments about the lateral axils.

T. The veloclity along the flight path v for the phencmenon under
consideration is assumed to be comnstant.

8. Air Porces and moments are assumed to be linear functions of their
variebles.

9. The steady state about which the system oscillates is assumed to
be horizontal flight.

10. The dynamic pressure ratlic gg/q &and the downwash factor M/
are regarded as constant during the flight motions.

IV. DERIVATION OF THE EQUATIONS OF MOTION

For obtaining the enuations of motion Lagrange's method will :be
used which permits the required equations of motlon of a system
with n degrees of freedom to be found from the following generally

valid relation:
d.'b‘ EQVl &v lV (

Since this report deals with accelerated motions, it 1s useful to select
for the determination of the kinetic emergy T a nonaccelerated system
of reference. For the present problem the coerdinate system fixed to the
ground may be regarded as such a system of reference., In 'that system,

in its most general formmlation, one would have to consider for an alr—
plane in free flight the degrees of freedom

1. translation of the center of gravity of the airplane in
X g—direction,

2., translation of the center of gravity of the airplane in Yg—direction,

3. translation of the center of gravity of the airplane in
Zg—direction,

L4, rotation of the longitudinal inclination of the airplane about
the center of gravity of the airplane g,

5. rotation of the lateral inclination of the alrplane about the
center of gravity of the alrplane ¢,
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6. rotation of the compass angle about the center of gravity of
the airplane v,

7. rotation of the elsvator about axis of rotation of the main
control surface 1.

However, for the consideration of the longitudinal motion of an
airplans due to symmetric elevator operation one may assume that the
airplane executes motions only in the ngg—plane. Thus no motions
take place in the coordinates Yg, o, end ¥ and the system is reduced
to the degrees of freedam Xg,2g, 4§, and .

For the system sketched in figure 1 the kinetic energy assumes the
form .
_ 3
1 * 2 . *\2 . . . (2
T =j= Fq_ 3 + F + +Fs (8 + 74 +

[2 537 + T, + % + g, + 4+ i)

> (2)

: 2 2 2
+ mlvsl + EQ'VSE + m3V53]

v
The velocity coordinates VSp of the partial masses m, result fram the
position coordinates Xsr, ZSr by differentiation with respect to time
ag the relations
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f]
2 _¢2 o o
vg© = Xg + Zg
2 : 2 - 2 2:2 e .
vsl = Xg + Z8 + 0819 — 2ed E{gsin 4 + chos ﬂ
2 [ 2 . 2 2-2 2 . . 2 . - [
v§2 =X8 +Z8 + rg~8° + e (3 + 1) +2rHaE£gsine +Z8cos13]
+ 205(3 + W) Ecgsin (g + 1)+ 2gcos (9 + 'q)]
+ 21'392-5(35 + 1) [sin 3 gin (8 + 1) + cos § cos (§ + n)]
X3)
‘7’,5‘,32 = Xg° + 282 + e 82 + (LHr - Lm)a(é + 1) + 332({3 + 1+ ﬁH)2

+ aer:)[}'Cgsin 34 + 28cos 19]

+ 2(Lgr — L ) + ) [Egetn (0 +n) + Bgoos (9 )

+ 203 9 +n + n};) [f(gsin@ + 1+ Tlh> + igcosé 0o+ nh)}

+ 2rH<LHr - I.Hh)ﬂ(ws + g)cos 7 + 21‘3631.9('5 + 1+ nh) cos (n + "]h)

+ 293@31. —Lﬂh)(é + n)&ﬂ +7 + "'lh\ cos Ty,




8 NACA ™ 1197

If the derivatives are formed according to the rule glven in equation (1),
one recognizes that the equations of motion are no longer linear and thus
cannot be treated in a closed mathematical form. Therefore the expres—
gions are already linearized at this polnt, that 1s, one puts cos X =1
and s8in X = 0.

These deliberations together with the summarizing of certain expres—
slons yleld for (2) the form

T = l{m(f(ge + 2"82 ) + Fyée + Fﬂrhz + Frplp2
+ 247 [-_FHr + m3rH(LHr - LBh) + Moo Ty + m3e3rH]
+ 213-1'111 l,;ﬂh + Mae Ty +<LHr - LHJ:)H + 2-&28 EH< + m3) - elmﬂ
+ 20Ny [F}Ih + m3e3<LHr - LHh):‘ +2(9 + ﬁ)ﬁg[rn3<LHr - LEh) + meeg:l

+ 2mgeq (ﬁ + 0+ Tlh)ég}

>(22)

U

If one Introduces for the "generalized forces" @, convenient symbols
d {ar
and the derivatives '675[3@ into (1), the desired equations of motion

read, if 1, is regarded not as free coordinate, but as disturbance

function

igm=quin7—W cos ¥
ngn + 3 {(mg + m'3> rg + m3 @Er - LEh)— My o1+ Mpdn+ m393]
+ ;‘i[lfl3(1‘Hr ‘LHh) + Mpeo+ m393] =G +Wsiny —A cos 7
.t / —' _ - ’
Zg l:\mz + m3) I +.m3 (LHr I‘Hh) me,+ mye, A mse:;J + 6Fy (1)
+ T“I:FHr * BTy L — Lgn) + o7y * m363”Bﬂ = Mp (%,095, 157, Mh)

Zg[m3 (LHr - I‘E‘n) + Moy + m3e?;| + -]3'[FHr + m3rE<LHr - I‘Eh) + mpeply
+ m393rH] + WFgp = Mgy (%m0, 75Mn)
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One sees that this system contains the eight variables Xg, Zg, Ss -7
n, &, ag, and M Since there exlst here four relations connecting

the varlables, which are given by
'\
'8=0:.+7

ag = ag(@, &,9 )

tan y = i—g > (5)
23

and

1y = nu(t) (disturbance function)

-

the four equations of motion derived in (4) are necessary and sufficient
for & complete description of the problem.

The terms mn.e, &and rgevly, respectively, contained in this general

formulation of the equations of motion permit — taking the welght moments
appearing in Mi and Mpg. 1nto consideration — the couplings caused by

unmass—taelanced control surfaces to be included.

An assumption of fully mass-balanced control surfaces, that is,
®) =8 = 63 = 0, does not only signify an essentiel simplification from

the mathematical point of view; it is, with respect to e, and eg,

necessary to ensure freedom fram flutter.

If one considers, moreover, the orders of magnitude of the individual
sum terms in the corresponding equations, one finds that for riglid
aircraft part of the coupling terms is of subordinate significance; 1f they
are neglected, one obtains the following simplification of the equation
system:

igm=—-A sin 7y — W cos 7
Zgn
3Py = My,

5&“1{1- + m3rE(lar — Lmiﬂ + TFEr = Mar

G+Wseslny —-—Acos vy
¢ (62)

-~
or, written in the manner custamary for flight mechanics,
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mN%% =A—-Gecos Yy
- . (60)
Fyg = Mi

3[Fp,. + m3rH(LEr -LHhEI + g = Mg,

J

As shown by flight measurements and calculations,l the first equation of
(6b) affects the variation of the coordinates 7 and § only slightly,
due to the smell change in speed v along the flight path at starting
conditlons. If one dlsregards, thersefore, this equation for the solution,
the remeining equations with v = const. = v, are sufficlent for the
description of the problem and one obtains the equations of motion

-

ay
mv =A -G cos
at 7

Fy:s' = My, F (60)

[FHr + m3rH(LHr - I—‘Hh)] 9 + Fgpil = Mgy

-t

the further mathematical investigations will be based on them in this shape.

The first equation of the equations of motion of (6¢) deals with the
forces perpendicular to the plane of the traJjectory.

The second equation represents the condlitlon for moment equilibrium
about the center of gravity of the alrplane, whereas the third eguation
expresses the condition for moment equillbrium about the axis of rotation
of the main control surfaces.

For the "gensralized forces" g, designated in (6c) by A, M
and Mg,., one makes the assumption that they are linear functions of the
variables. Than the expresaions

A = Sogre - . (7)

1B:1bliography (4)
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- e - { iy + S+ Sl X
+{3@_§;}H » Zam, &];;EHH}FHLH%E

are valid for (6¢c,l) and (6¢c,2). A and M, are, therefore, relatively
independent of the method of control by tabs. '

(8)

In expression of the external moment in (6éc,3), however, the
form of the tab control obtains decisive lmportance.

In filgures 2 and 3 the most frequently used tab controls are repre—
sented schematically. .

The ‘direct control by tabs is constructed so that no direct mechanicul
control possibility exists betwesen control stick and tab. Instead, a
deflection of the control stick actuates a servo—unit fixed to the main
control surface and thus effecte a displacement with respect to ths main
control surface.

For indirect tab control a deflection of the control stick actuates,
by & push-pull control, a lever pivoting on the axls of rotation of the
main control surface. Due to the relatlive motion of the lever with regzrd
to the main control surface deflections of the tabs are effected. If one
inserts, moreover, & spring between lever and main control surface, the
result represents a cambination of a servotab control and a direct con:rol.
If one makes the spring infinitely rigid, the system is transformsd into a
direct control by main control surfaces.

For the control by tabs visualized in figure 2 the expression
for Mﬁr reads

oy
Mgy =3 ooy + aﬂwyinﬁ rlgag — My (9)

the factor (l)Alq is to be Interpreted as damping factor of the main
control surface.

If one wants, on the other hand, to give the expression for an indirec:
tab control (fig.3), the relation

Mgy = Morm * Mpeg + Mggn + Mp
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must be taken into consideration, with

MCrH = alrforce moment of the not moving elevator
Mped = mament of the spring
Moin = moment of the tab rod force
(), -
Mp = mament of the maln control surface demping = — Aimn
If in figure L
® signifies the deflection of the driving lever a
1 the deflectlon of the main control surface
g the deflection of the tabd
i the mechanical gear ratio between tab deflection and

driving lever =&

there exlsts between the three angles, due to mechanical couplinz, the
relation

Ny = (¢ — n)1(o,n) (10)

Due to the deflectlon of the spring caused by the activation of the
lever =&, a moment of the following magnitude arises

Mped = Creaf(®,n) (11)

with Cpeqg signifying the mament of the spring about the axis of rotation
of the main control surface referred to 1°. :

The tab push-rod force Payy DProduces a mament about the axis of
rotatlon of the main control surfeace

Mgy = Mgui(e,n) (12)

with

aCr}{h aCth aCth ag
QT+ Y Nprp Bl g — 12a
{ g Bt 5, 0t S Mg FRLRA (122)



NACA ™ 1197 13

For small angles the gear ratio may be put as

i(p,n) = const, =1 (10a)
and
f(p,n) = (9 — 1) (112)
Only variations with respect to a condition of steady motion are

declisive for the course of the motion. Thus one will introduce for ths
veriables the expression

7 =7, + Ay
@ = agy + A etc.
One then obtains for instance for the first equation of (6c,l)

ay

a
mig L = §;'q°F(“° +Ax) — G cos (7, + A7)

and by subtractlon of the steady starting condition .

XCq
0= a — G cos ¥
& OF o
the relation
mvc%% = %CGEqOFAa + G sin 7, A&y (13)

If one treats the expressions for My and Mg, in a similar manner and
takes into account that the cqefficients CMF’ CnH’ Cmu, CrE DAY te

expressed as llnear functions of the corresponding angles2 for instance for

N

thelir varlations with respect to the steady condition assume the form
AV, = FlAo + - SR

= ety + 0B + Gy g
+J:_E§ﬁaﬂ + —Bﬁﬁﬁq + gﬁggﬁﬂé}FELHl—- J

2Bibliography (5)

(8a)
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and

_ aCrH m BCrH q-H (l) . .
MMy, = ——A“H + —-E-[An + th FHLqu_ - Alnn (9a)

or, respectively, taking (10) to (12) into consideration,

Mgy = aa;H + iacrE%}FHLHqggﬁaH

iE
Kac o Bn : i@cnh anh ]Fﬂlﬂqq— ~ Cpeardny>  (9P)
(1, .
{’Caqh HLE[q- ~ CreafA® — = "A1gn

-’

the factor (1) AlTl of the last term of the equation (9b) is to be regardsd
as damping parameter of the main control surface.

For the angle of attack ag &at the location of the horizontal tail
the expression customary in flight mechanics will be used.

A = <' Eé)Aa + == ;gﬁﬁé (15)

If in (13) the horizonbal flight is regarded as starting condition, one
obtains

_z°Ca

= Cpha

and fram the relations comnecting the varisbles (5) result — taking into
conslderation the expression

J = 3o +AD

and

the relations
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A = A + Ay
S=&+7=0a+ Cph , S _ (16)
9= +7 =0+ Cxe

J

With the according éummarizations and transformations the relations
(5) to (16) yield, inserted into (6¢c), in the conventlional form the
differential-equation system with the two degrees of freedom o and g

i+ Magd + Oagan + @ays + Mag s+ Oagpa = cpps(e)
(17)
(O)AgnA'q + 4 + (l)Aguﬁc + (O)AQGAC(. = CoAS(t)

one has to put for the variation of the disturbance function AS(t) in
the case of direct tab operation

AS(%) = By ()
and in the case of indirect tab operation
AS{t) = Ap(t)

The differential equations thus obtained may now serve, for a
prescribed dynamic pressure, for the determination of the course of the
movement. Generally, however, it will be desired to treat the entire
dynamic pressure range in & closed form. If one chooses, therefors,

T = yat as new independent varisble and puts An = An(T);
Ao = Ax(T); by = Any(T) and, respectively, AP = A9(T) one obtains

n' 4 and, respectively, & = a! ya ]

(18)
cc," q j

These relations (18) substituted into (17) permit, after division by 4,
a representation of the differential egquations no longer explicitly
dependent on the dynamic pressure which may then be written

0

7= 1"a G
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1 Bazenr + Oagoan & @agpar + Wy ar 4 Oy ng - oyas(r)

(17a)
(o

)AgnAnI+ o o+ (l)Agag' + (O)AgmAa = ConS(T) ]

If one takes into consideration that the moment due to Cpy in (8) and
(8a), respectively, remains small in camparigon with the other quantities,
the coefficients may be written

a) for direct tad control

~

(l)Aln = (l)Aln rarameter of the main-control-surface damping
(o)Al _ Cpy Fely 9y

K on Fmr 4
S mary Cpr — Lyp)

1 2)
()Alor,={( Am%gg_acrﬂmq—%ﬂ*%}\/g

> (17D)
(O)Am=_aci~ﬂﬁl_m+£gg§eﬂaﬂ‘fgtiﬁ_
g F X G2 X 9 |a
(0) Xop Fyry &
fan =5 BT
(v, _ L )EFH %, Loy
hoq = 2(0a + B)ra T8 E =5V
©)y. _ ), _»n, Par o T e Vi B
"0t g e T 6 R o T S
0; = — Zrr Tely g )
oy Far g
c. - o Fr¥m 95
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b) for indirect tab control

-
(l)Al,q = (l)Al-q parameter of the main—control—surface damping
(O)p. - _ [aCrH , 1 FrEn i<aCrE N iacrml> por 38 _ CFed| 1

S e N B T
(Q)Alcc. =1 + m?rHE(ILHI‘ﬁ_ LEh)

Hr
Wayy = {Plare2 e O
(O)Alcc = - GcrH + 1 I‘Eb.)( - -&nggl‘ﬂ&i\/_H) LE QE .
CE - m \ (a70)

(0)a. = .ai!ﬂ + 1?9_@ Fe's 95

on =

n on a‘ﬂh Fy q

(Vs -J%oEf , 2VFE L&, Lar V8

Aoa Ba,HaH+aa,F 2q+3a.ag2

Ly g X

(o) = nHH o, Pa Fop a_ H_ MF prll

fe "1 VT ' Egng&H\l;HYH BT [

C Q.
rH rHh H Fed{ 1
Gy =1 :CDH PE's 8
F
My y ¢ y

In the scope of thls investligatlon 1t dces not signify an essential
limitation if one regards both dynamic pressure ratio ] q_H/q and downwash

factor MN/dx as constent not only during the flight motion but also far
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the dynamic pressure range to be investigated, so that with this
presupposition a linear, Inhomogeneous or camplete system of differential
equations with two degrees of freedom is presented for discusslon.

V. GENERAL, SOLUTION OF LINEAR DIFFERENTIAL
EQUATION SYSTEMS (DES)

Knowledge of the solutlions of inhomogeneous differentlal equations
or, respectively, differentlal—equatlion systems 1s a presupposition for
the treatment of starting phenomens ag they are of importance in flight
mechanics3 and other technical fields. These solutions are glven in the
most general form for & linear DES with constant coefficients and n degrees
of freedam wilth arbitrary disturbance functlons and starting conditions.

1. Solution for Arbitrary Disturbance Functions and Starting Conditions

One assumes as given the DES with n degrees of freedam

:ft zfi(p)aunxs(p) = Fy(t) (19)

K=l =0

Therein l1s:

ko =1, 2, 3 ...... 0 the designation of the dependent variables

v =1, 2, 3 ..... . n the notation of the independent differential
equations

K =0, 1,2 ...... m the order of derivative of the respective
dependent variables

XK(“) = the p—th derivative of the k—th varilable; Xn(o) ls to
be = X,

(e = the coefficient of the DES which stands for the p~th

derivative of the K—<th variable in the vV—th line,

3cf. bibliography, (4) and (6)
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The desired solution of this problem can be given in a particularly clear

form by using the Laplace transfomation)‘". The required auxiliary theorems
are Introduced here without any proof.

If one applies to (19) the Laplace transformation

a(’{F(tz} =fF(T)C_PTdT (20)
0

and bears in mind that there exists the relation
L F(“)(t)} = p“ac{F(t)} _ﬁ F(A) (0)pH—M-1 (21)
A=0

(with the sum to be put equal to zero for u = 0), (19) is transformed
into

~1
;;(E)auﬁ puJEc';] _g XK(K)(O)pH_l . Fu(t)}

or
n .
> 2 L} =) ¢ S o) (22)
K= k=1 .
with
(D) =i; ("")abnp“ functions at most (23)
p= of m-th degree in p
z p (1) (A) H—A—1 that is, functions  (2k)
gun(p) =% % aDRXK (0)p at most’ (m - 1)=th

degree In p

YB1v110graphy (8)
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Therewith the linear DES with constant coefficients is reduced to an
algebraic problem with the n unknown OC’{X& . The coefficlents of the

unknown f{xn} ere rational integral functions at most of the m—th degree

in p. The absoclute terms .on the right side of (22) consist of the
Laplace transforms of the disturbance functions of the DES (19) and
rational integral functions of at most (m — 1)~th degree in p which

contain all starting conditions XNO‘)(O) with A=0, 1, 2 ..... (m—-1)
of the problem.

If one applies to (22) the theorems of the theory of determinants,
the solution of the unknown QC{XE} may In the most general form be written

as follows:
oﬁ{xn} - 3% (25)

therein D 1s the coefficient determinant, that is D = 0, the character—
istic equation of the DES (19) :

D(p) = |f,,(p) (26)

D, in each case the determinant which results fram the coefficient

determinant D if its k—th column is replaced by the sequence of the
absolute terms of (22)

n
J{Fu(t)} * fi—; &y (P) (27)

Since, however, the determinant Dn may be written as sum of two

determinants one of which conteins in the respective column the Laplace
transforms of the disturbance functions Fu(t), the second the sum

n .
Z gun(p), it will be useful to agree upon the following:
k=1

If in (22) all F (t) =0 and at least cne X (7‘)(0) # 0 one is
dealing with a hanogenecus camponent solution; if at least one F (t) # 0

and all XK(X) (0) = 0, with an inhomogensous one.

With this stipulation (25) may be written also
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D
L - g g a0

If one now imaglines the determinants written down and calculated, there is

1.D a polynomial of at most (mn)-th degree in p

mn
D(p) =3 a2 (26a)
m
2.D a sum of polynomials of at most m(n — 1l)~th degree in p,

kinh
since the K-th column contains the seguence of the

Laplace — transform QC{FU(t)}. If this determinant Dginh 1is
developed with respect to the #r—th column, one can also write

D ron(p) = ;f{%‘v(t’}%n“’) (29)

with Ay, belng the algebraic camplement of the element [{Fu(t)} and a
polynomial of at most m(n — 1)-th degree in p.

3. Dnhcm is a polynomial of at most m(n — 1)-th degree in p
n _
- - (N oA
Dy (®) é} g_l Gon (2) b A (0) _ﬁm C,p (30)

so that after these deliberations (28) may be written in the

form
() . Pynen(®) |
T (t VK khom (285.)
{ } ‘f{ ( )} D(p) D(p)
with Aun/D and Dnhom/n representing rational functions in
the form of real frections in p.

If the characteristic equation (26a) has only simple roots designated
by pu(u =0, 1,2 v.... (mm — 1)), the rational functions in the form of

real fractions of the right side of (28) may be represented with the aid
of decamposition to partial fractions in the following manner
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Aoy (P) _ Ay (2u) 1 (31)
D(P) =0 D'(Pp.) P - Pp,
and
D¢ hom () _ o=l D¢ ham(P1) 1 (32)
p(p) 45 DY) P-my
thereln

' daD = (IJ»)
DI(p,) = [d—P]p% - T We-w (33)

with the raised "(u)" signifying that the factor is to be put equal
to ™"1" for which v = u.

If one now introduces the two functlons of time

Bl pe ()
Con ) =;:L=§::o D?inpp? o (3%)
and
Ik Doy o (Pu)
He(6) =2 %%DL oPu® (35)

their Laplace transforms will be exactly ldentical to the decompositions
to partial fractions represented in (31) and (32).

Therewith (28) and (28a), respectively, are transformed into

B o

and, using the convolution [Faltungs] theorem

< F(t)}af{c;(t)} =o(% % G} =d¢ | F(r)a(t - T)ar

one obtains
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o({ Zf F, (r)Gyp (t —7d7 + E_(t)

If one now cancels again the Laplace transformation and takes (34) and
(35) into comsideration, there results as solution of (19)

1l D
X () —Zﬁ (P“) Pl g (7)o PuTar 5 —'i}-li‘-‘f”—)eput (36)
V=1 p=0 s =0~ D'(ou)

Thus, in the most general form, the solution of a linear DES with
constant coefficients for arbitrery starting conditions and Integrable
disturbance functlons is indicated in closed form.

It has to be noted that (36) was derived only under the assumption
of simple roots p, of the characteristic equation D(p) = 0 of the DES.

If the solution for mmltiple roots of the characteristic
equation D(p) = 0 also is of interest, no particular difficulty is
encountered if the corresponding expressions of the related decampositions
to partial fractions are taken lnto consideration and introduced.

2. Solution for Constant Disturbance Functions and Arbitrary Starting
Conditions

For the practical englneer, however, this general solution gains full
significance only when he 1s given ways and means to represent the desired
functions X, numerilcally for his statement of the problem. The

solutions Xy may be regarded as known when one succeeds 1n representing,
for analytically ‘prescribed disturbance functions Fu(t), the quadrature

of the time integral J/tFu(T)éﬁPPTdT in closed form.

o
In all cases where a representation in closed form is difficult or,

respectlvely, the F (t) are not prescribed analytically but are, for

instance, known fram tests as diagrams, there exists fundamentally the
possibility of replacing the function Fu(t) with a step function

according to figure 2 in such a manner that the areas enclosed by the
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curve Ev(t) or, respectively, by the step function and the abscissa
are equal,

According to the mean value theorem of integral calculus, in an
arbitrary time interval At

AL
Fo(T)dr = AtF (ty) = AR, (t, + dAt)

Ty 0<y

A

1

If one performs the limiting pfocess with At—> 0, the step function tends
toward the function Fu(t) according to

+ At
f H F (T)ar
%
lim Y M

At—> 0 At

= F(tu)

that is, one can approximste an arbitrarily prescribed integrable dis—
turbance function F,(t) by according selection of the At with arbitrary

accuracy.
One can therefare visuallze any arbitrary dilsturbance phenomenon &as
bullt up from constant disturbance functions CH which cammence to act

at the times tu, 80 that one obtains a very serviceable approximation for

the caomponent solution xuinh of the inhamogeneous DES by superposition

of the partlel solutions due to the constant disturbances Cu.

For investigation of starting conditions the explicit form of (36)
shall thus be given only for

Fy(t) = Const, = Cy

The inhamogeneous part of (36) then obtains the form
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n mn-l1 A.DR(Pp.) ot _
Xginn = 2 oD () 2 D, (37)

which can still be considerably simplified.

If one forms, namely, from (31) the linear cambination

i A (P) i A.OK(P;;) 1 (38)

S U0 5o oo D () © - Dy,

the mumerator of the left side of (38) represents & determinant which
one obtains from the determinant of the characteristic equation (26)
by replacing the k—th column by the Cu; thus one obtains & polynamial

of at most m(n — 1)~th degree in p.

n m.nrl%
Z Cube(®) =2 () = ;=o 7‘)bn177‘ (39)

v=1

For (38) one can therefore write abbreviatedly

n A (® a'p) geda (e o

= = ' 8&
UZ=1 % DEP§ D(p) <5 D'(pu) P - (382)
while (37) obtains the form
2, (0) @l A (pw) 5.t '
Xpinh = T;’ DT( )pu (372)
=0 Pu Pu

If one introduces, -moreover, for the hamogeneous component solution according
to (30)

D o (Pu) =2

Can

and defines a functlon of time dependent only on the roots pu of the
characteristic equation D(p) =
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t) =
o) =3 S (50)
its A—th derivative with respect to time is
1 o A=l
oM (r) =S Pu__ Pt (40a)

and the solution of linear DES with constant disturbance functions and
arbitrary starting conditions obtains the very clearly arranged form

mn—1
X, - or t)‘” oM 13— Moe®™Diey g
s |

whereas the derivative with reepect to time of the k—th coordinate is
glven by the easily obtainable expression

L
tz (MWD (1) 15— N pM2)(s) (12)
A=0 .

Summarizing, it may be repeated that the solution for cdnstant
disturbance terms may be represented in & clear form: +the determinants
D(p) are to be determined according to (26) and Ag(p) with the

coefficlents (x)bu according to the rule (39) whereas the coefficients
(Mg, and the function of time @(t) are given by (30) and (40),
respectively.

3. Solution for Harmonic Disturbance Functions and Arbitrary
Starting Conditions

If, aside from the starting phenomens, periodic permanent conditions
also are of interest, it will be useful to write the disturbance functions
in the form

F (t) = ¢ olft

)y May be & real as well as a camplex quantity. (36) ylelds as solution
the relation
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B ) B S,
p,_

o=1 p=0 D’(p ) 1% — py D'(p,)

and one recegnizes that particular attention must be paild to cases where
10, = B, (43)

Since all roots pu were assumed different from each other, this

case will occur precisely for

10, = P,

If one writes (42) in the form
: - . ox(Po) vt Pot \ M1 ADK(Pu) o1t o2t
5=r °P'(po) 19 — o =1 D'(py) 10, —p,

(k22)

+ %lbnhcm(m) sPl-lt
|J,=O D! (Pp,)

and if now iQy—>p,, the first of the sum of (42a) assumes the indefinite

form 0/0, whereas the rest remains certainly finite when the real
parts R(py) of the roots are less than zero.

Thus the further deliberations concern only the first expression for
which one has to perform the limiting process

it +
v .. gPo
1im 6___9__

10y Pq 1y — Po

t
_ teP(:o

if one performs once more & limiting process with t—w
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0 for R(pe)<0

lim tePob = 3
t—>w
w for R(pgy) 20

-

one recognizes that the solutions remain finite only i1f all real parts
are R(py)<0.

Only under this assumptlon it seems logical to speak, in connectlon
with (42), of a permanent condition for which then the relation

n_ mn-l Aun(p“) ot

X = c L6
Dt ?)%_l 5 D'(pu) 10y - By, (k)
ig valid.
From (31) follows for p = iQ, the relation
B (100) mo=l Am(pu) 1
(I " - DT I~ hg
andi one obtains
Lo 18yt Aue (1)
XxDau = Z e c (¥7)
a1 = i DZi%;
With the designations
Cobor(10) = 74 (@) + 18y, () (47a)
and
D(10y) = aplRy) + 1By(ay) (%71p)

**Tpranslator's Note: The subscript "Dau" is an abbreviation of
the German word "Dauerzustand" signifying "permanent."”
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respectively, and the fact that real as well as imaginary part of (%7)
represent solutions, one obtains by transformation

n
o} o] -

X Day = > %712’“ Al 5123 YK cos Qpt — 2o ot |312)71m sin Qb (48a)
o=l | %y * Py @y + By

and
- oy + BuBuk Q B = ByTug

Xwpau = Z > - sin Oyt + > - cos Qt (48b)

v=l | ay® + By = + By

respectively; however, for instance for (48a) one may write abbreviatedly

n
Xpau = 'ogl Vo cos(Qyt + k) (49)

with the amplitude function

Vor (50)
and the phase displacemsnt
Bk — B
Gox = a.rc'banc)yon Uﬁ“") (51)
Iolon * Bu VK

One has to consider that the expression takes into account the excltation
of each individual coordinate with a different frequency. One then has

+0 stress not only that it is possible to eliminate the roots of the
characteristic equation but also that one may successfully include with the
functions defined in (50) and (51) the influence of the v—th excitation
on the k=th coordinate, and that one may cobtain the total solution of
the permanent equation by superposition of the partial solutions.

With these stetements we shall regard the most general case of linear
DES with constant coefficients and n degrees of freedam as closed.
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VI. SOLUTION OF THE EQUATIONS OF MOTION
DERIVED IN (IV)

The application of this method to the treatment of the prescribed
differential equation system (17a), with the coefficients (17b) for the
disturbance functions

OS(T) = Const = ASmax
and

AS(T) = ASmaxeim

proceeds particularly simply.

Although the disturbance function ASpgx = const. is not exmctly

realizable in practice, it is well to note its solution. It represents
the upper limit for the controllability of an ailrplsne by tabs and may
serve as a comparative measure for control phenamena depending on time.

The explicit representation for periodic disturbance functions may
be particularly valuable when information on resonance positions, amplitude
functions, and phase displacements is required.

If one wants, on the other hand, to estimate the possible error which
may appear with the problem discussed in Section V,2 — to replace dis—

turbance functions dependent on time by suitable selection of constant
disturbance functions Cu — 1t is suitable to use disturbance functions

linearily dependent on time.

1. Solution for AS(T) = Const. = ASpax

If one tekes into consideration that by the selectiog of the steady
Initial state all starting conditions are Aw =Ay =& =1 =0 and
divides the equations of (17a) by ASmax, using further on the designations

Lo X, and 5§£E; = X1, one obtains according to (41) with n = 2

ASmax
end m = 2 +the relations
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and

=< (N, (M)

Te= 2 o (8)

A

respectively.

For the determinant of the characteristic equation (26) one hae to put with (23)

((o)aln NN pa) ((O)ala. L Wy, (@ w?)

D{p) =

P

Go)aen vOx °) ((o)am + Wagep + 92>

arranged according to powera of ©p, the relations

¥

(53)

L6TT Wt vovn

TE




m
'.—l
I}

valid for the coefficients of the determinant (53).

(0), (1),

(0, (1)

27 20

Y
)
:Jl
J

The determinant A (p)} which one obtains according to-the rule (39) by replacing the K-th
columm of (53) by the disturbance terms C,» 8lso arranging them according to powers of p, 1s

et

LOTT WL YOVN




with the coefficients

(O)bl =

(1)

oo Meg,

¢, @e

[
n
]

= A'_]__(o)

2
u‘fj) = ('m‘)bn?’\
g:O
(0)
B'l'r! 1
(0)b2 =
(1)
15 C1
(1)
b2 =
0 Cp
1 c
(2)-
A DE =
0 Qs
v 2

= 5,(0)

() E
B
2
=
3
> (5ha)

38
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With (40) the function @(t) is represented by the relation

3
i
o(T) Zu=o WLE (55)

wherein p, are the simple roots of the characteristic equation (53)
and with (33)

_ ; ﬂ
p*(p,) = T W(ou - p,) (552)
V=0

For the numerical utilization of (55) one has to distinguish three
cases.

a) All roots real

b) Two real and one pair conjugate-complex roots

¢) Two pairs conjugate—camplex roots
a) All roots of the characteristic equation real

If all roots Pu are-real, the M~th derivatives of (55) appearing
in (52) and (528) are

() ) 3 puk—leppr ¢
o) =5 B (56)
and the solution (52) obtains immediately the form
o] 3
xn = A’];—EO-)T +Z d_uepu'r - (57)

p=
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with

2 A1
(M), Pu
dy = b
u ;é% aew) (57e)
and
. 03 o
XIC = zg dppuepu (57b)
p=
respectively.

b) Two real and pne palr conjugate—camplex roots

Since here and also in the case c¢) in the expression for Q(k)(T)
complex quantities p, appear, the representation of the solutions (52)

in terme of real quentities proceeds somewhat less simply. However, the

presence of conjugate—coriplex roots signifies only that the solution
contains periocdic functions.

If one, therefore, splits off the two real roots Por Py and designates
the pair of conjugate-complex roots by p2 3 = nliiwl, one may write for
3
(56) the expression

¢(}J(T) = (}JBoePOT + (K)coepif + {}R)Bl sin Wyt + (K)cl cos wyT of1T  (58)

with

o{®(5) = 9(1)  ana (O)Bo =B, etc.
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and
Bo = 1
- Po (B0 = P1) Kpo - nl)2 + w2
Co = = . —
Py (Pl - PQ KPl - "1) + "1? |
By = %{‘1 [(Po - "1) (PJ. - "1) = "12] + w2 (Po + P - 2'@1)}
Cq = -1 l[ -— - - - K -
1 ﬁ% (o — *) @1~ =) "12] 1v1(Po + 21 2”1)}
N =w (Ill2 + wla) [(po - "1)2 + wla] [pl - nﬁe + wle]
.(X)Bo - 2B, (M]31 _ ml(Pu—l)B:L _ wl(k—l)cl
(k)co = By, mcl - "’1“_1)31 ¥ "‘1(-.x-l)cl

If one now substitutes (58) into (52) and adds similar camponents
of the solutlion, one obtains (58) in terms of real quantities

(0)
Xy = —?Ey— + a,onepdr + Boneplf + {a.lnsin W1T + Bjyc08 wl"}enl'l' (59)

ol D>
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with

2
o = 3 M)y, Mg ey = go (M, Mg

> (5%92)

.2
oy = g () (M) - =§ W)y, (Mg

and by differentiation with respect to time the velocity

Xy = Eo,‘epm + Eo,gep B AL {Elnsin V1T + Bygcos wl'r}enl'r {59b)
with

Eone = Po%ox Uy = By — 1Bk
(59¢)

Bo

k- P1Poy B =W1%y *+ ®Big

¢) Two pairs of conjugate—complex roots

= gt
This case 1is solved, 1f ome puts Po,1 = ko—iwg
and pp,3 = nlﬁ.wl, with the relation

1
CP()")(T) = Z (X)B.osin w.T + (X)Cucos w

=0 '

'DT
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with

B

.- vy ("12N+ wl2) {No [( - K?l) (w —_ ):] 2w 2 (,g_ 0 — nl)}
‘. - vy Q‘l _N+ "12) {"o [("o - nl)E - (woe _ wf)] + 2rg¥o (H‘-o - Kl)}
By = 2O (u + w2) ful Ij("° - k)R + + (v - wf)} + 2w1® (ko — ul)}
C1L = - '°( °2){ [(" - "‘1)2 + (wof - "12)1 — 2rywy (kg — "‘l)}

(_.—J

_ X 60a )
N = D(O)"o"'l{(ﬂo - 11)% + (% - "1)2}{(»:0 - n1)2 + (vo Vl)z}
(M - e 0Dy (D)
g Vg g
o
If one introduces here also (60) into (52) and forms the sum of similar
terms, there appears here as the type of solution the form
1 .
D(0) =0
with
2 (M) (V) 2 My W)
= > by "By Bok = > Py Cy (61a)

A=0 _ A=0
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and for the derivatlve

1
Xg = Z {Euusm T + E’on‘ms "u"'} Gl (61b)
V=0
with
N
Qi = By — WPy
(61c)
_ 7
B‘u}g = VU%& + KUB'OK.
J

2. Solution for Harmonic Disturbance Function AS(T) = ASmxeim

The solution of this specldal case is sultable for demonstrating the
behavior of airplane controle by control surfaces and tabs for periodic
excitations as they may be caused, for instance, by englne vibrations,
fuselage—bending oscillatlons,or torsional oscillations of the stabllizing
surfaces. However, one will have to pay speclal attention to the permanent
forced oscillating state in camparison with the starting conditions.

Noting the fact that the function elQT which is dependent on time
is independent of any summation, ons obtains with (%7) and the relation
(54) as solution the permanent equation

_iom(19)
XnDau' © Bl(‘i_ﬂ)_ (62)

the values of the determinants A (p) and D(p) have to be determined
according to (511») and (53) for purely imaginary arguments p = iQ.

Consequently it is useful to choose for these camplex expressions
the form
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A (10) = 7,(9) + 38 (q)
K X K (63)

D(1iQ) = &(9) + 1y(Q)

with the real functions of. &

K K

"
1)
5y = \ b0
4 =ao—a_292_ﬂ)+
- —a 03
¥ alﬂ a3

the coefficients of which are given with (53a) and (5ka), respectively.

If the real part of (62) is to be regarded as solution, there results
because of (38)

Xy = TrCos(aT + €4) (6%)
with the amplitude function
2
vy +5 L
o\ (6
£ + ¥

and the phase displacement

€5, — ¥y
€ = arc tan {ﬁs—:} (64-b)
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3. Solution for Linearily Dependent Disturbance Function AS(T) = AT

As already menticned at the outset, this solution may serve for
camparison of instantanecus and time—dependent sudden deflection of the

tabs, 1f orne superposes the two phencmena N

AS(T) = at for 057<w
and ' > (65)
0 for o0ST<TrT
AS(T) = .
a'(T- Tl) for Tl§ T <m

As resultant deflection phenamenon one obtains for instance the disturbance
function represented in figure 6. Particular interest will be attached to
that deflection phenamenon which characterizes the maximum velocity of
deflectlion of the tabs possible in practice and is given by

- OSpay (65a).
T1

8

To attain the solution one will go back to the general form of equation
(36).

With the fact already stressed in Section VI, 1 that all starting
conditions are zero, there follows with

F (1) = CUASmaxT
T-
1
after performance of the integration for the ratio ox Xy
x
and -ﬂLx = X5, respectively,
Xe = =2 —_— epll'r—pu'r—l (66) .
151 ¥=0 p,®p* (o)
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With the relation (64%), however, one can write

S0 S adm) g 3 afe) 66a)
T T E{A( 0) +¥o PuD* (py) N-%PpeD'(Pp.) (

or, after according rearrangement and introduction of the notation in
powers for

z o 10 3 C N 1 (1) eP“T
e TlD(O)T+|§o *1pu20'(p,)  2,2D*(py) +§ D' (py)
(66b)
3 (2) BT 3 2 (A')bn F
b
"2 R T o B '
J
If one forms fram (55) the integral
o(t)at -3 d—g7 1 (&)
o =0 |n0' (ny) D, D' (py)

and introduces the designation/"(p(ﬁ)dé = cp(_l)('r) one may write for

0
(66), in analogy to (52), also

ca e o, oy 32 My 66
T T1 |p(0) +§- K i u%o%pfnt(pp) (66e)

Corresponding to the three cambinations of the roots of the characteristic
equation (53) treated in Section VI, 1 these three possibilities could be
investigated here also.
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Let 1t suffice to point out the procedure for the case of two pairs

of conjJugate~complex roots. As analogon to (60) one may selsct the
expression

5 1
/CP(E)dE = go [(_l)Busin VT + (_l)cucos wu"] e o7 (_l)C,o (672)
0

J
with

(1) _ FoBo + wulo

v Kup= + Wy

(L) - =By + KyyCy

v 2 2

K"D + wD

with the B, and C,, to be calculated according to (60b). With (67a)
and (60), (66¢c) is transformed into the form

A (0) 1
X, = Ti].- 5_?‘6)_7 + u=§o [“‘unsin w.T + B,cos wu‘i]e Kot
\ (>8)

., () 2 B,
{ ° l+§xz=lpp D' (py)

with
o = (M) (g
VK =0 R v

2
B‘L‘,R __.Z (X)bn(k_l)c'o
A=0
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If one introduces into (68) according to rule (65) the argument (r — 1)

instead of the independent variable T and superposes the solutions thus
obtained, the solution for the deflection phenomenon sketched in Pigure 6

assumes the shape
1
A (0) - - KT
X] —[X] =B, Tpe8in wuT + cos w v
[ K & wr; = D(0) % b ° Pooos Wy o

with N

Ay = L Obun(l — e EyTicos wu'rl) + Bune—"UTlsin WTy
T
1l

3 =2 —RoTL TKyT:
Box = oY Gy ® sin w,T; + Buns<l - e "Oilcos w,Ty

whereas for the derivative the relation

with
Gog = By = Wby

Pok = WpQpp + KBy

/

exigts and one must note that (69) 1s wvalid only in the interval

(69)

(692)

(69b)

(69c)
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The first partial report may be closed with these thsoretical exposi-
tions. In the second partial report the resulis of the present report
will be applled to large alrcraft controlled by tabs.

VII. SUMMARY

The present report 1s intended as a contribution toward the clarification
of problems arising for longitudinal motions of alrplanes which are con—
trolled not by direct control surface activation but indirectly by tabs.

After a general derivation of the equations of motion for the four
degrees of freedom Xg, Zg,-s, and 1w and taking into consideration that

the control surfaces are not weight—compensated, permissible assumptions
are introduced so that the system of four degrees of freedam is reduced to’
a system with the two degrees of freedem o and 7. By the

substitution T = t\Jg & representation of the equations of motion which
1s independent of the dynamic pressure becames poesible inasmuch as one
reogards the dynamic pressure ratio qH/q and the downwash factor aﬁ/aa as

constant.

While stability and oscillatlon conditlons may be discussed already
with a knowledge of the solution of homogeneocus differential equation
systems, one must know also the soliitions of inhomogeneous differential
equation systems for the investigation of starting phenamena. Since the
required mathematical expedients appear sultable not only for the solution
of the prescribed problem but also for the analytical description of
similar problems, they are treated in the most gensral formulation for a
linear differentlel equation system of n degrees of freedom with constant
coefficients, and arblirary starting conditions and disturbance functions
asg far as the latter are integrable.

From the general solution speclal solutions for constant and periodic
disturbance functions are developed.

With the definition of a function ¢(t) which depends only on the
roots of the characteristic equation one may obtain for constant disturbance
functions a solutlon of & very clearly arranged form; 1t consiste of the
three constituents: constant, inhamogeneous, and hamogeneous part of
the solution.

For periodic excitatlons one determines first the conditions which
ere required to mske a permanent state possible. Then one can demonstrate
that amplitude and phase—displacemsent functlons exlst which include the
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influence of the v—th excitation on the k-—th coordinate. The total
solutlion of the permanent egquations 1s then obtalned by superposition of
the partial solutions.

These results yield, applied to the prescribed problem, the desired
solutions; with regard to numerical calculation real representation of the
functions is particularly emphasized.

Translated by Mary L. Mahler
RNational Advisory Cammittee
for Aeronautics
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Figure 2.- Direct tab control.

Figure 3.- Indirect tab control.
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